#### Controls on reactive nitrogen inputs and exports in Central Valley watersheds









Dan Sobota<sup>1,2</sup>, John Harrison<sup>2</sup>, Michelle McCrackin<sup>3</sup>, Kara Goodwin<sup>2</sup>, and Jana Compton<sup>4</sup> ORAU





<sup>1</sup>Oak Ridge Institute for Science and Education <sup>2</sup>Washington State University-Vancouver <sup>3</sup>National Research Council <sup>4</sup>NHEERL, US EPA



Reactive Nitrogen Research for San Joaquin Valley Agriculture June 4-5, 2013



#### Reactive N is a wicked problem

- Benefits from agricultural production: \$2 to \$5 per kg N
- Damage costs for human health: \$0.54 to \$39 per kg N
- Damage costs for ecosystems/climate: -\$12 (benefit) to \$56 per kg N

**Enhanced crop yields** Colin Bishop

**Products & Energy** 



**Drinking water contamination** 



**Smog formation** 



**Harmful Algal Blooms & Hypoxia** 



Cost estimates from Compton et al. (2011) and Van Grisman et al. (2013)



# Human imprint on N inputs in the United States





#### Central Valley water quality issues









# The Central Valley as a study system for reactive N





### 1. Environmental diversity

Inational Elevation Dataset PRISM LCMMP



#### 2. Diverse land use/land cover







76 distinct land use/land cover and crop classes!



# 3. Data on riverine N export



**Date** 





 Provide estimates of anthropogenic reactive N inputs by source to Central Valley watersheds



- Provide estimates of anthropogenic reactive N inputs by source to Central Valley watersheds
- Examine landscape factors that might influence riverine exports of reactive N



- Provide estimates of anthropogenic reactive N inputs by source to Central Valley watersheds
- Examine landscape factors that might influence riverine exports of reactive N
- Describe new work examining current and future riverine export of dissolved inorganic N in the San Joaquin River

# Anthropogenic inputs of reactive N to watersheds

#### $\bigcirc$

#### **Definitions**

- Inputs & yields: mass per area per time
  - kg N km<sup>-2</sup> yr<sup>-1</sup> ≈ lbs N acre<sup>-1</sup> yr<sup>-1</sup> \* 100
- Loads: mass per time
  - $kg N yr^{-1} = 2.2 lbs N yr^{-1}$
- Concentration: mass per volume of water
  - mg N L<sup>-1</sup>
- Runoff: volume of water per area per time
  - $\text{ mm yr}^{-1} = 0.04 \text{ inches yr}^{-1}$



## Net N inputs from human activities late 1990s - early 2000s

















# Net anthropogenic N input – early 2000s





# Watershed N inputs by source





# Watershed N inputs by source



### **Atmospheric N deposition - 2002**





# Manure inputs - 1997





### Synthetic N fertilizer – 1999-2001

10 – 29% of synthetic fertilizer accounted in harvest

# Factors influencing riverine N export



# Spatial pattern – inputs





# Spatial pattern - yields





# Spatial pattern - concentrations





### Spatial pattern - concentrations





Net N inputs & runoff explain 72% of variance in TN concentrations

# Input – yield comparisons



Net N input (kg N km<sup>-2</sup> yr<sup>-1</sup>)



# Input – yield comparisons



Net N input (kg N km<sup>-2</sup> yr<sup>-1</sup>)



#### Fractional export of N inputs



#### Fractional export of N inputs



# Modeling of riverine N export: Global Nutrient Export from Watersheds (NEWS) model

#### **NEWS** model





#### Scenario drivers – national scale

|                                          | 2000 | 2030<br>Adaptive<br>Mosaic | 2030<br>Global<br>Orch. | 2030<br>Business<br>as Usual | 2030<br>Ambitious<br>(25%<br>reduction) |
|------------------------------------------|------|----------------------------|-------------------------|------------------------------|-----------------------------------------|
| Population (million people)              | 297  | 370                        | 375                     | 375                          | 375                                     |
| Fertilizer recovery efficiency (%)       | 48   | 63                         | 57                      | 48                           | 70                                      |
| N in human<br>excretion<br>(kg N/person) | 6.4  | 7.3                        | 8.0                     | 8.0                          | 6.4                                     |
| N removed by WWTP (%)                    | 61   | 66                         | 70                      | 61                           | 80                                      |

#### **Future DIN loads**





# Take home messages



 Synthetic fertilizer, manure, and deposition account for >80% of annual anthropogenic N inputs



 Synthetic fertilizer, manure, and deposition account for >80% of annual anthropogenic N inputs

 Net N inputs from human activities and runoff explain >70% of variance in N concentrations



- Synthetic fertilizer, manure, and deposition account for >80% of annual anthropogenic N inputs
- Net N inputs from human activities and runoff explain >70% of variance in N concentrations
- Export of watershed N inputs scales exponentially with runoff



- Synthetic fertilizer, manure, and deposition account for >80% of annual anthropogenic N inputs
- Net N inputs from human activities and runoff explain >70% of variance in N concentrations
- Export of watershed N inputs scales exponentially with runoff

 Current practices could more than double DIN export from the San Joaquin River by 2030



#### Acknowledgements

- Funding provided by California Sea Grant (award number RSF8) and the USGS 104b Program
- Randy Dahlgren, UC-Davis
- Charlie Kratzer, USGS California Water Science Center



#### **Additional Information**



## Temporal Pattern - Runoff





## Temporal Pattern - Export



Watershed latitude (degrees)



# Temporal Patterns: Import-Export





#### Temporal Pattern - Concentration





# Long-term trends



### Long-term trends





### Long-term trends



#### River flow



# Fractional export of N inputs







#### **Natural N-fixation**

- Average of two methods:
  - Vegetation classes (Cleveland et al. 1999)
  - Baseline N-fixation in soils (Boyer et al. 2002) and fixation by Ceanothus spp. in conifer forests (Busse 2000)



#### Reactive N in the United States



54 total, individual N input estimates BNF: biological nitrogen fixation  $1 \text{ Tg} = 1 \times 10^{12} \text{ g}$  or  $2.2 \times 10^9 \text{ lbs}$ 

Sobota et al. 2013, Frontiers in Ecology and the Environment



# Anthropogenic P Input





# Proportion of P inputs



#### NEWS-SPARROW comparison





# Agricultural N-fixation





# Centralized Sewage Nutrients





# Septic System Nutrients





# Crop Nutrient Harvest



# Millennium Ecosystem Assessment scenarios

